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Abstract

Real materials and structural components are often non-homogeneous, either by design or because of the physical

composition and imperfections in the underlying material. Thus, analytical solutions for non-homogeneous materials

under mechanical loads are of considerable interest to engineers and have widespread applications, given the prevalence

of these materials in fields as diverse as aerospace, construction, electronics, etc. More precisely, those are essentially

composites with carefully manufactured properties that yield desirable mechanical characteristics and properties, such

as optimal arrangement of the material, minimum weight, etc. To this end, the displacement fundamental solution (or

Green�s function) corresponding to a point force for the non-homogenous biharmonic equation in two dimensions are

derived in this work by employing a conformal mapping technique in conjunction with the Radon transformation.

These functions, besides being useful in their own right, can also be used within the context of integral equation for-

mulations for the solution of boundary-value problems. Finally, a series of numerical examples that deal with the non-

homogeneous plate on elastic foundation problem serve to illustrate the present method.

� 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Plates on elastic foundations date back to Hertz (1895), who investigated the case of a floating thin plate.

Since then, a number of analytical solutions have followed, as for instance plates resting on an elastic half-

space (Schultze and Mahs, 1950). A comprehensive account of these closed-form solutions reaching into the

1960�s can be found in the treatise by Timoshenko and Woinowsky-Krieger (1970). Gradually, emphasis
has shifted to numerical methods of solution, primarily through development of various types of finite

elements for representing plates and shells (Zienkiewicz and Taylor, 2000). As far as boundary integral
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equation methods are concerned, we have the pioneering work of Jawson and Maiti (1968), who introduced

a complete integral formulation for thin plates using as kernel functions the singular solutions for a point

load on a circular plate obeying the radiation boundary condition. Following that seminal paper, as well as

early papers by Bezine (1978) and Stern (1979), much work has gone into developing what is now known as
the boundary element method (BEM) for problems involving plates. Besides the classical bending of thin

plates of various shapes, boundary conditions and loading, we have work on orthotropic (Irshchik, 1984),

anisotropic (Heng and McCammond, 1992) and thick plates (Benitez, 1991), plates on elastic foundations

(Katsikadelis and Armenakas, 1984; Bezine, 1988) and plates of variable thickness (Katsikadelis and

Sapountzakis, 1991), plate stability (Kamiya et al., 1984), plate dynamics (Leissa, 1969), nonlinear plates

(Song and Mukherjee, 1989; O�Donoghue and Atluri, 1987) and finally contact problems involving plates

(Sapountzakis and Katsikadelis, 1992; Faruque and Zaman, 1991). We mention here in passing that a state-

of the art review (Providakis and Beskos, 1999) on just plate dynamics by the BEM, written a few years ago,
referenced about 150 papers.

The need remains, however, for specialized fundamental solutions that will enhance the capabilities of the

BEM to treat plates made of non-homogenous materials. To that end, the present paper focuses on devel-

opment of Green�s functions for point loads using conformal mapping in conjunction with the Radon

transformation. The specific type of inhomogeneity is dependent on the type of mapping prescribed; for

instance, an exponential mapping yields a plate modulus that also varies exponentially with distance from the

source of application of the load, a quadratic mapping gives a modulus that varies as the radial distance raise

to the second power from the source, etc. Conformal mapping methods for obtaining fundamental solutions
have been introduced rather recently (Shaw and Gipson, 1995; Shaw and Manolis, 2000) as an alternative to

integral transforms (Fourier, Laplace, Hankel, etc.), which despite their generality leave an inverse trans-

formation in the form of a contour integral over the complex plane as the final step. It is worth mentioning

that the inverse transformation when using conformal mapping is simple and, in any case, no more difficult

than the direct transformation. The drawback is that we are dealing with an �inverse�method, i.e., the material

profile recovered depends on the conformal mapping used and cannot be established independently of it.

The second step in the solution procedure involves use of the Radon transform (Burkovics, 1994;

Schmetterer, 1994) for computing a fundamental solution of the �mapped� biharmonic equation. With the
Radon transform, a function of two variables is reconstructed from its integrals over all straight lines in the

plane or from contour integrals over smooth curves in 2D. In the most general form of the transformation,

a function of n variables is reconstructed from its integrals over all n hyper-planes. We mention in passing

that the Radon transformation went unnoticed for many years and was rediscovered in the 1950�s in

conjunction with medical imaging that lead to development of the computer-assisted tomography (CAT-

scan) technique. Finally, a series of examples serve to illustrate the present methodology and to contrast the

fundamental solutions obtained herein with some of the classical ones involving a floating plate and a plate

on elastic half-space described by the Boussinesq influence function.
Solutions to the biharmonic equation with non-constant coefficients go beyond plate theory. For in-

stance, thin shell analysis usually proceeds along two paths, starting with the breakdown of the shell

governing equations (Novozhilov, 1964) into either two fourth-order differential equations for the deflec-

tion and stress function or starting with the usual plate bending equation supplemented by membrane

action. In either case, information provided in this work may prove to be useful in establishing integral

equation formulations for shallow shells.
2. Methodology

The non-homogeneous biharmonic operator is defined in a Cartesian coordinate system Ox1x2 and for a
simply-connected domain X � R2 as a fourth-order, linear differential operator



Fig. 1. Non-homogeneous plate resting on an elastic subgrade.
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Lðx; oxÞuðxÞ � Dx KðxÞDxð þ bÞuðxÞ ð1Þ
In the above, x ¼ ðx1; x2Þ, Dx ¼ o2

ox2
1

þ o2

ox2
2

is the 2D Laplacian, function KðxÞ 2 C1ðXÞ such that

Ka 6KðxÞ6Kb where Ka, Kb are positive constants and finally bP 0 is a constant. From a physical view-

point, uðxÞ is the plate deflection, KðxÞ the elastic modulus and b the reaction of a sub-grade material (see

Fig. 1).

Since our final objective is to solve well-posed boundary value problems (BVP) for L in X by the BEM,

the first step here is to recover an efficient (for numerical implementation purposes) fundamental solution

for operator L. Specifically, we seek Green�s function Uðx; nÞ such that
Lðx; oxÞUðx; nÞ ¼ �dðx; nÞ ð2Þ
where d is Dirac delta (generalized) function and n ¼ ðn1; n2Þ is the source point where a unit load is applied.

It is well known (John, 1955) that if KðxÞ is analytical (or C1) in X, then fundamental solution U exists.

This is also true for many other operators, for which KðxÞ (or an equivalent function) satisfies weaker

smoothness requirements. If KðxÞ ¼ K0 (a constant), then U can be obtained by the Fourier transform or by
other methods (such as power series expansions) and its form involves a combination of Bessel functions

(Timoshenko and Woinowsky-Krieger, 1970). Such solutions have been used in the past for solving BVP

with the BEM (see Brebbia et al., 1984). Our aim is to obtain a fundamental solution of Eq. (1) for the class

of admissible functions KðxÞ defined below.
2.1. Conformal mapping

Let Y be a conformal mapping (Sidorov et al., 1982), defined in X through reference to a regular

function Y ðzÞ ¼ y1ðxÞ þ iy2ðxÞ, z ¼ x1 þ ix2. Denote by JðxÞ ¼ detðoy=oxÞ the Jacobian (determinant) of the
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transformation y ¼ yðxÞ, and by J1 ¼ J�1 the Jacobian of the inverse transform x ¼ xðyÞ. In view of the

Cauchy–Riemann conditions
oy1
ox1

¼ oy2
ox2

;
oy1
ox2

¼ � oy2
ox1

ð3Þ
functions y1ðxÞ, y2ðxÞ are harmonic in X, i.e., satisfy Laplace�s equation DxyjðxÞ ¼ 0, j ¼ 1; 2. Furthermore,
JðxÞ ¼ oy1
ox1

� �2

þ oy1
ox2

� �2

6¼ 0; in X; J1ðyÞ ¼
ox1
oy1

� �2

þ ox1
oy2

� �2

6¼ 0 in Y ðXÞ ð4Þ
Under the change of variables to Y , Laplacian Dx in X is transformed to an operator J1ðyÞDy in Y ðXÞ, which
is essentially a scaled Laplacian (Shaw and Gipson, 1995; Shaw and Manolis, 2000). Specifically,
o�
ox2j

¼ oy1
oxj

� �2
o2�
oy21

þ oy2
oxj

� �2
o2�
oy21

þ 2
oy1
oxj

oy2
oxj

� �
o2�

oy1oy2
þ o2y1

oxj

o�
oy1

þ o2y2
oxj

o�
oy2

ð5Þ
where � indicates the argument. Using Eqs. (4) and (5) yields
Dx� ¼
oy1
ox1

� �2
"

þ oy1
ox2

� �2
#

o2�
oy21

�
þ o2�
oy22

�
þ 2

oy1
ox1

oy2
ox1

�
þ oy1
ox2

oy2
ox2

�
o2�

oy1oy2
þ ðDxy1Þ

o�
oy1

þ ðDxy2Þ
o�
oy2

ð6Þ

and it follows from Eq. (3) that
Dx� ¼ J1ðyÞDy � ð7Þ

Define as KX ¼ fKðxÞ; x 2 Xg the set of C1ðXÞ-continuous functions such that condition KðxÞ=JðxÞ ¼ c
(with c > 0) is fulfilled in Y ðXÞ, provided conformal mapping Y exists. The equivalent statement in the new

(mapped) coordinates is
K1ðyÞJ1ðyÞ ¼ c ð8Þ

where K1ðyÞ ¼ KðxðyÞÞ. The set KX can now be characterized as follows.

If y1ðxÞ is a harmonic function in X, then there exists a unique (to within a constant) harmonic function

y2ðxÞ in X, namely the conjugate to y1ðxÞ, such that function Y ¼ y1ðxÞ þ iy2ðxÞ satisfies the Cauchy–Rie-

mann conditions (Sidorov et al., 1982) given in Eq. (3). The Jacobian of the conformal mapping defined by

Y is determined from Eq. (4). Using Eqs. (3) and (4), it follows that function y1ðxÞ in X must satisfies the

conditions
Dxy1ðxÞ ¼ 0

oy1
ox1

� �2

þ oy1
ox2

� �2

¼ 1

KðxÞ

8<: ð9Þ
Therefore, function KðxÞ 2 KX if and only if function y1ðxÞ exists in X and satisfies Eq. (9). As examples of
such transformations (see also the Appendix A) we have the following cases:

(a) Exponential, where y1ðxÞ ¼ ex1 sin x2; then KðxÞ ¼ e�2x1 .

(b) Quadratic, where y1ðxÞ ¼ x1x2; then KðxÞ ¼ ½ðx21 þ x22Þ�
�1
.

(c) Power law, where y1ðxÞ ¼ x1x2 þ a1x1 þ b1 þ a2x2 þ b2; then KðxÞ ¼ ðx1 þ a1Þ2 þ ðx2 þ a2Þ
� ��1

in the

domain X � R2 n f�a1;�a2g.

In sum, the system of Eqs. (9) for determining y1ðxÞ when KðxÞ is a given bounded, positive and smooth
function in a simply connected domain X is over-determined and, generally speaking, a solution does not
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exist. In this work, we will recover a fundamental solution for Eq. (2) only when function KðxÞ 2 KX, since a

detailed study of Eq. (9), including complete description of set KX, is in itself a separate task.
2.2. Radon transformation

Let KðxÞ 2 KX and Y be the corresponding conformal mapping with JðxÞ its Jacobian. Then, by em-

ploying Eqs. (7) and (8), biharmonic Eq. (2) is transformed in X1 ¼ Y ðXÞ as follows:
cJ1ðyÞDyðDy

�
þ b=cÞ

�
V ðy; nÞ ¼ �dðy; nÞ ð10Þ
Since for a point function, ð1=ðcJ1ðyÞÞÞdðy; nÞ ¼ ð1=ðcJ1ðnÞÞÞdðy; nÞ, Eq. (10) can be re-written (with
b1 ¼ b=c) as
DyðDy þ b1ÞV ðy; nÞ ¼ � 1=ðcJ1ðnÞÞð Þdðy; nÞ ð11Þ
We will now find a fundamental solution of Eq. (11) using the Radon transformation in 2D. More

specifically, the Radon transformation for a function f 2 I (the class of rapidly decreasing functions in C1)

is defined (Ludwig, 1966; Zayed, 1996) as
Rðf Þ ¼ f̂f ðs; nÞ ¼
Z
hy;ni¼s

f ðyÞdS ¼
Z

f ðyÞdðs� hy; niÞdy; s 2 R1; n 2 S1 ð12Þ
where h�; �i is the scalar product in R2. Also, the inverse Radon transformation is
f ðyÞ ¼ R�1ðf̂f ðs; nÞÞ ¼ 1

4p2

Z
jnj¼1

Z þ1

�1

opf ðp; nÞ
s� p

dp
� �

dn ð13Þ
A useful property of the transformation is linearity, i.e.,
Rðaf ðyÞ þ bgðyÞÞ ¼ aRðf ðyÞÞ þ bRðgðyÞÞ ð14Þ
Furthermore, if LðoyÞ is a homogeneous differential operator of degree k with constant coefficients, then
RðLðoyÞf ðyÞÞ ¼ LðnÞ ok

osk
f̂f ðs; nÞ ð15Þ
The Radon transform can also be defined in the space of distributions (see Gelfand et al., 1966) as
Rðdðy; nÞÞ ¼ dðs� hn; niÞ ð16Þ
Applying the Radon transform to both sides of Eq. (11) and using the above properties, which give
RðDyf Þ ¼ ðn21 þ n22Þo2s f̂f ¼ o2s f̂f , yields the transformed biharmonic equation as
o2s ðo2s þ b1ÞbVV ðs; nÞ ¼ � 1

cJ1ðnÞ
dðs� hn; niÞ ð17Þ
The solution that follows will first consider the possibility b1 > 0, while the special case b1 ¼ 0 will be

treated later.
We follow Vladimirov (1984) and solve the equivalent initial-value problem for the ordinary, trans-

formed differential equation
d2
s ðd2

s þ b1ÞZðsÞ ¼ 0

ZðsÞ ¼ Z 0ðsÞ ¼ Z 00ðsÞ ¼ 0; Z 000ðsÞ ¼ �ð1=ðcJ1ðnÞÞÞ

�
ð18Þ
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with s ¼ hn; ni. The unique solution of Eq. (18) is ZðsÞ ¼ aþ bsþ cei
ffiffiffiffi
b1

p
s þ de�i

ffiffiffiffi
b1

p
s, where coefficients
a ¼ � s
b1cJ1ðnÞ

; b ¼ 1

b1cJ1ðnÞ
; c ¼ e�i

ffiffiffiffi
b1

p
s

2ib3=2
1 cJ1ðnÞ

; d ¼ � ei
ffiffiffiffi
b1

p
s

2ib3=2
1 cJ1ðnÞ
Then, the solution to Eq. (17) is
bVV ðs; nÞ ¼ Hðs� sÞZðsÞ ¼ Hðs� sÞ
bJ1ðnÞ

ðs
"

� sÞ þ 1

b1=2
1

sin½
ffiffiffiffiffi
b1

p
ðs� sÞ�

#
ð19Þ
where Hð�Þ is the Heaviside (or step) function.
2.3. Green’s function

The next step is to apply the inverse Radon transform defined in Eq. (13) to recover the fundamental
solution as
V ðy; nÞ ¼ � 1

4p2bJ1ðnÞ

Z
jnj¼1

ln g
h

� cið
ffiffiffiffiffi
b1

p
gÞ cosð

ffiffiffiffiffi
b1

p
gÞ

h
þ sið

ffiffiffiffiffi
b1

p
gÞ sinð

ffiffiffiffiffi
b1

p
gÞ
ii				

g¼jhn;y�nij
dn ð20Þ
where
ciðzÞ ¼ �
Z þ1

z

cos t
t

dt; siðzÞ ¼ �
Z þ1

z

sin t
t

dt
are the cosine and sine integrals, respectively. If we denote
V ðy; nÞ ¼ � 1

4p2bJ1ðnÞ

Z
jnj¼1

ðeVV1 þ eVV2Þ
		
s¼hn;y�ni dn;
where
eVV1 ¼
Z þ1

�1

or½Hðr� sÞðr� sÞ�
s� r

dr and eVV2 ¼
1

b1=2
1

Z þ1

�1

or½Hðr� sÞ sinð
ffiffiffiffiffi
b1

p
ðr� sÞÞ�

s� r
dr;
then by using the properties of the Radon transformation, and of the delta and Heaviside functions, we

recover the following results in the sense of distributions:
eVV1 ¼
Z þ1

�1

dðr� sÞðr� sÞ þ Hðr� sÞ
s� r

dr ¼
Z þ1

s

dr
s� r

¼ ln js� rjjþ1
s ¼ � ln js� sj;

eVV2 ¼
1

b1=2
1

Z þ1

�1

dðr� sÞ sinð
ffiffiffiffiffi
b1

p
ðr� sÞÞ þ Hðr� sÞ cosð

ffiffiffiffiffi
b1

p
ðr� sÞÞ

s� r
dr

¼
Z þ1

s

cosð
ffiffiffiffiffi
b1

p
ðr� sÞÞ

s� r
dr ¼ �

Z þ1

s�s

cosð
ffiffiffiffiffi
b1

p
ðp þ s� sÞÞ
p

dp
In the above, p ¼ s� r. Furthermore,
eVV2 ¼ �
Z þ1

s�s

cos
ffiffiffiffiffi
b1

p
p

p
dp � cosð

ffiffiffiffiffi
b1

p
ðs� sÞÞ �

Z þ1

s�s

sin
ffiffiffiffiffi
b1

p
p

p
dp � sinð

ffiffiffiffiffi
b1

p
ðs� sÞÞ;
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and
eVV2 ¼ �
Z þ1ffiffiffiffi

b1
p

ðs�sÞ

cos q
q

dq � cosð
ffiffiffiffiffi
b1

p
ðs� sÞÞ �

Z þ1ffiffiffiffi
b1

p
ðs�sÞ

sin q
q

dq � sinð
ffiffiffiffiffi
b1

p
ðs� sÞÞ;
where
ffiffiffiffiffi
b1

p
p ¼ q. Finally,
eVV2 ¼ cið

ffiffiffiffiffi
b1

p
ðs� sÞÞ cosð

ffiffiffiffiffi
b1

p
ðs� sÞÞ þ sið

ffiffiffiffiffi
b1

p
ðs� sÞÞ sinð

ffiffiffiffiffi
b1

p
ðs� sÞÞ:
In order to check that Eq. (20) is indeed a fundamental solution of Eq. (11), we use calculus of distri-

butions and an integral representation (Vladimirov, 1984) of the delta function over a unit circle in 2D.
dðzÞ ¼ 1

4p2

Z
jnj¼1

1

hn; zi2
dn ð21Þ
Finally, the fundamental solution of Eq. (2) in terms of the x variables is Uðx; nÞ ¼ V ðyðxÞ; nÞ. Its first

spatial derivatives are obtained as follows:
oxjUðx; nÞ ¼ oyk V ðy; nÞ
oyk
oxj
where
oyjV ðy; nÞ ¼ �
ffiffiffiffiffi
b1

p
4p2bJ1ðnÞ

Z
jnj¼1

cið
ffiffiffiffiffi
b1

p
gÞ sinð

ffiffiffiffiffi
b1

p
gÞ

h
� sið

ffiffiffiffiffi
b1

p
gÞ cosð

ffiffiffiffiffi
b1

p
gÞ
i				

g¼jhn;y�nij
nksgnðn; y � nÞdn

ð22Þ

The remaining derivatives of Uðx; nÞ up to third order, that would also be required within the context of a

BEM formulation, are obtained in a similar way as above. Back-substitution of these results satisfies Eq.

(11) identically. We note the difference between the classical fundamental solution for a homogeneous plate,

where modulus KðxÞ ¼ K0, and the above solution in which Uðx; nÞ is no longer a function of the relative

distance (x� n) between source and receiver, but depends on both x and n separately in a more complicated

way.

2.4. Freely-supported non-homogeneous plate

This case is recovered when b ¼ 0 in the biharmonic operator of Eq. (1). Specifically, the Radon

transformed Eq. (17) attains a simpler form, i.e.,
o4s
bVV ðs; nÞ ¼ � 1

cJ1ðnÞ
dðs� hn; niÞ ð23Þ
This equation is again solved as an initial value problem (Vladimirov, 1984)
d4
s ZðsÞ ¼ 0

ZðsÞ ¼ Z 0ðsÞ ¼ Z 00ðsÞ ¼ 0; Z 000ðsÞ ¼ � 1

cJ1ðnÞ

8<: ð24Þ
where s ¼ hn; ni. The unique solution of Eq. (24) is now ZðsÞ ¼ aþ bsþ cs2 þ ds3, where
a ¼ s3

6cJ1ðnÞ
; b ¼ � s2

2cJ1ðnÞ
; c ¼ s

2cJ1ðnÞ
; d ¼ � 1

6cJ1ðnÞ

Thus, the complete transformed fundamental solution is
bVV ðs; nÞ ¼ Hðs� sÞZðsÞ ¼ �Hðs� sÞ
6cJ1ðnÞ

ðs� sÞ3 ð25Þ
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Substitution in Eq. (23) yields
o4s
bVV ¼ � 1

cJ1ðnÞ
dðs� sÞ
which confirms that the solution is correct. Finally, applying the inverse Radon transform we obtain the
fundamental solution
V ðy; nÞ ¼ � 1

8p2cJ1ðnÞ

Z
jnj¼1

g2
3

2

�
� ln jgj

�				
g¼hn;y�ni

dn ð26Þ
Denote
V ðy; nÞ ¼ � 1

4p26cJ1ðnÞ

Z
jnj¼1

eVV 		
g¼hn;y�ni dn
where
eVV ¼
Z þ1

�1

or½Hðr� sÞðr� sÞ3�
s� r

dr
By using the properties of the Radon transform, of the delta function and of Heaviside function we get (in

the sense of distributions) that
eVV ¼
Z þ1

�1

dðr� sÞðr� sÞ þ 3Hðr� sÞðr� sÞ2

s� r
dr ¼

Z þ1

s

ðr� sÞ2 dr
s� r

eVV ¼ �3

Z þ1

s�s

ðs� s� pÞ2

p
dp
where p ¼ s� r, and finally
eVV ¼ �3

Z þ1

s�s

ðs� sÞ2

p

"
� 2ðs� sÞ þ p

#
dp ¼ �3ðs� sÞ2 3

2

�
� ln js� sj

�

which completes the solution.

To check that Eq. (26) is indeed a fundamental solution of the problem, we use calculus of distributions

and the representation of the delta function as a line integral over the unit circle for the general case b 6¼ 0.
3. The equivalent homogeneous plate

The biharmonic equation governing bending of an isotropic thin plate resting on an elastic foundation

under conditions of radial symmetry is
DDrDrwðrÞ ¼ qðrÞ � pðrÞ ð27Þ
where D is the plate modulus, q is the load, p is the subgrade reaction and r is the radial distance between
source and receiver. We revert here to the more standard notation used in structural analysis and define as

W ðrÞ the fundamental solution of the above equation under a point load at the origin.

(a) Floating plate: If the subgrade reaction is simply proportional to the plate�s deflection (i.e.,
pðrÞ ¼ kwðrÞ), then the solution of Eq. (27) can be recovered (Hertz, 1895) as a power series or in terms of

modified Bessel functions. Specifically,
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W ðrÞ ¼ �ðP‘2=2pDÞkeiðrÞ ð28Þ
where P is the magnitude of the point load applied at the origin of the coordinate system, kei is a Kelvin

function and ‘4 ¼ D=k is a length parameter.

(b) Plate on elastic subgrade: For this case, the Boussinesq solution is employed, which gives the com-

pliance of the elastic half-space as k0ðaÞ ¼ ð1� m0Þ2=ðpE0aÞ, with E0, m0 the modulus of elasticity and

Poisson�s ratio of the halfspace, respectively, while a is the distance projected on the free surface between

source and receiver. By defining a new length parameter as ‘30 ¼ D=k0, the solution for the plate deflection

(Schultze and Mahs, 1950) is
W ðrÞ ¼ P‘20
2pD

Z 1

0

J0ðkr=‘0Þdk
1þ k3

ð29Þ
where J0 is the zero-order Bessel function and k ¼ a‘0.
(c) Free plate: The solution for a point force at the center of a circular plate is well-known and included

here for completeness purposes. Specifically, the basic form (Timoshenko and Woinowsky-Krieger, 1970) is
W ðrÞ ¼ �ðP=8pDÞr2 lnðrÞ ð30Þ
Alternative forms, which include zero-displacement boundary conditions and have been used in BEM for-
mulations (Bezine, 1978; Stern, 1979), areW ðrÞ ¼ �ðP=8pDÞr2 lnðr=r0Þ andW ðrÞ ¼ �ðP=16pDÞr2ðlnðrÞ � 1Þ.
4. Numerical implementation

The solutions derived using the present methodology were numerically evaluated for the case of an

elastic plate with the following reference properties:
E ¼ 2:8� 107 kNm; m ¼ 0:25; d ¼ 0:20 m ð31Þ
where d is the plate�s thickness. These values yield a plate stiffness modulus D ¼ Ed3=12ð1� m2Þ ¼ 19; 911
kNm. The plate rests on elastic subgrade defined by the following constants:
E0 ¼ 2:0105 kNm; m0 ¼ 0:35 ð32Þ
which yield k0 ¼ 113,960 kN/m2 and ‘0 ¼ 0:559 m. For the floating plate case, k ¼ k0 (but in kN/m3) and

‘ ¼ 0:646 m.

Two types of non-homogeneous plates are examined here that are defined by the exponential and

quadratic conformal mappings. In the former case,
y1 ¼ expðx1Þ cos x2; y ¼ expðx1Þ sin x2; J ¼ expð2x2Þ; KðxÞ ¼ c expð�2x1Þ ð33Þ
where ðx1; x2Þ are identified with polar coordinates ðr; hÞ, while in the latter case
y1 ¼ x21 � x22; y2 ¼ 2x1x2; J ¼ 4ðx21 þ x22Þ; KðxÞ ¼ c=4ðx21 þ x22Þ ð34Þ
As far as the parameters appearing in conjunction with the governing biharmonic equation (1) are con-

cerned, c ¼ K0 ¼ D and b ¼ k1, where k1 is now the subgrade reaction that is proportional to the curvature

(i.e., the second derivative of the displacement). As was the case with the homogeneous plate, k1 ¼ k0 (but in
kN/m) and ‘1 ¼

ffiffiffiffiffiffiffiffiffiffi
D=k1

p
¼ 0:418 m. Finally,

ffiffiffiffiffi
b1

p
¼

ffiffiffiffiffiffiffiffi
b=c

p
¼ 1=l1 and the point load at the origin is con-

veniently taken as P ¼ 1000 kN.

First we concentrate on the homogeneous plate; Fig. 2 plots the deflection of both floating plate and plate
on elastic subgrade with the Boussinesq solution, as functions of distance from the point of application of
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the load. All quantities here have been normalized, namely the length by dividing with ‘0 (or ‘) and the

deflection by factor D=P‘20 (or D=P‘
2). These graphs are to within plotting accuracy of the results appearing

in Timoshenko and Woinowsky-Krieger (1970). We note at this point that the semi-infinite integral ap-

pearing in Eq. (29) for the plate on subgrade was numerically evaluated using the special Gauss–Legendre

quadrature formula with twenty integration points (Stroud and Secrest, 1966). Fig. 3 is simply the solution

for the free plate under the point load, depicting the three possible variations of the fundamental solution
discussed in the previous section. Of course, all three graphs are equivalent and have simply been rotated

due to imposition of the specific boundary condition. They are shown here because Green�s function for the

free non-homogeneous plate, Eq. (26), reduces to the plot (Stern, 1979) when the conformal mapping

collapses to a one-to-one correspondence between x ¼ ðx1; x2Þ and y ¼ ðy1; y2Þ.
The next series of results are for the non-homogenous plate. Fig. 4 depicts the normalized plate modulus

for both exponential and quadratic conformal mapping cases as functions of distance from the source,

which is calibrated with respected to length parameter ‘1. In terms of notation, Dð¼ K0Þ is the reference

value of the plate�s modulus at the origin. We note that KðxÞ for the quadratic mapping case is singular at
the origin (what we have there is essentially a rigid plate), while KðxÞ converges to D at x ¼ 0 for the ex-

ponential mapping case. Furthermore, because of radial symmetry, distance x coincides with radius r in the

exponential mapping. For the quadratic mapping, all plots are restricted to lie along the x1-axis.
Fig. 5 plots the non-homogeneous free plate deflection versus distance form the source. We observe that

the deflected shape of the plate defined by the quadratic mapping follows that of the equivalent homo-

geneous free plate, while the deflections of the plate defined by the exponential mapping increase quite

dramatically past a certain distance from the source. This latter behavior is due to the fact that we have a

large drop in the plate�s stiffness away from the center. In the former case, however, the plate�s rigidity is
comparable to that of the equivalent homogeneous plate for the key area surrounding the origin. Numerical

integration of the line integral along the circumference of a unit circle in 2D, as required by Eq. (26), was

carried out by standard Gauss–Legendre quadrature formula employing ten points (Stroud and Secrest,
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1966). It is worth noting that similar line integrals appear in the displacement solution for problems

exhibiting anisotropy in 2D elastodynamics (e.g., Wang and Achenbach, 1994). These solutions have

also been integrated numerically with good accuracy by using the aforementioned Gauss–Legendre

formulas.
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Finally, Fig. 6 plots the normalized displacement for the non-homogeneous plates supported on an

elastic subgrade versus dimensionless length parameter x=l1. We again observe that the displacement curve

of the non-homogeneous plate defined by the quadratic mapping follows quite closely that of the equivalent

homogeneous plate, up to a dimensionless distance from source of about 2.5. Past that, the solution starts

to exhibit oscillatory behavior. The non-homogeneous plate defined by the exponential mapping, on the
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other hand, exhibits oscillatory behavior from the start and, in terms of magnitude, deflects twice as much

as the previous plate. The reason for this is again the rapidly diminishing rigidity of the plate with in-

creasing distance from its center.
5. Conclusions

A procedure based on conformal mapping coupled with the Radon transformation is developed in this

work for determining fundamental solutions for a class of problems involving the non-homogeneous, bi-

harmonic differential operator. These solutions correspond to plates with position-dependent stiffness

resting on an elastic sub-grade. The exact nature of the plate stiffness variability is determined by the

particular conformal mapping used, and as examples we mention exponential variation as well as power-
law variation with respect to distance from the source where the point load is applied. In the future, it is

possible to do a systematic study of the non-homogeneous biharmonic equation, given the wide range of

applications it has in the field of structural mechanics. Finally, these functions can be used as kernels in

BEM solutions of boundary value problems in order to validate finite difference and finite element nu-

merical approaches for problems involving various types of plates.
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Appendix A. Conformal mapping

If a conformal mapping is introduced whose Jacobian is proportional to modulus KðrÞ, r being the radial
distance in the reference coordinate system, the relevant governing equation reduces to a constant coeffi-
cient form that can often be solved analytically. These types of mappings are defined by either
Z ¼ X þ iY ¼ f ðzÞ ¼ f ðxþ iyÞ ðA:1Þ
in Cartesian coordinates or by
Z ¼ R expðiHÞ ¼ f r expðihÞð Þ ðA:2Þ
in polar coordinates. Consider for instance the following power-type mapping
Z ¼ Azn ðA:3Þ

with A, n constants, which has a Jacobian of the form
JðrÞ ¼ ðAnÞ2r2ðn�1Þ ðA:4Þ

This leads to a variable coefficient expression
KðrÞ ¼ K0r2ðn�1Þ ðA:5Þ

where K0 is a constant of proportionality. Note that n does not need to be an integer, but must be greater

than zero if the material properties are to remain finite at the origin. Finally, this particular transformation

produces a relationship between the original and mapped coordinates in the form
R ¼ rn; H ¼ nh ðA:6Þ
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jR� R0j ¼ r2n



þ r2n0 � 2rnrn0 cos n½hð � h0�Þ
�1=2 ðA:7Þ
More examples of these mappings can be found in Shaw and Gipson (1995) and Shaw and Manolis (2000),

Sapountzakis and Katsikadelis (1992) and Faruque and Zaman (1991).
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